Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

N-(4-Nitrobenzoyl)- N^{\prime}-phenylhydrazine: a three-dimensional hydrogen-bonded framework

James L. Wardell, ${ }^{\text {a }}$ John N. Low ${ }^{\text {b }}$ and Christopher Glidewell ${ }^{\text {c* }}$

${ }^{\text {a }}$ Instituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, ${ }^{\text {b }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and
${ }^{\text {c School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland }}$
Correspondence e-mail: cg@st-andrews.ac.uk
Received 13 April 2007
Accepted 24 April 2007
Online 11 May 2007

In the title compound (systematic name: N-anilino-4-nitrobenzamide), $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$, the molecules are linked into a complex three-dimensional framework structure by a combination of two-centre $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and a three-centre $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{N})$ hydrogen bond.

Comment

As part of our continuing investigation of the supramolecular structures of acylhydrazines and acylhydrazones, we report here the structure of the title compound, (I) (Fig. 1), whose supramolecular structure we compare with that of the related compound N-(3,5-dinitrobenzoyl)- N^{\prime}-phenylhydrazine, (II) (Wardell et al., 2006).

(I)

(II)

The configuration at each of atoms N 1 and N 2 of (I) is almost coplanar. The central $\mathrm{C}-\mathrm{C}(=\mathrm{O})-\mathrm{N}-\mathrm{N}$ unit adopts an almost planar trans conformation and the remainder of the molecular conformation can be defined in terms of just four further torsion angles (Table 1). The large $\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 21$ torsion angle reflects the tendency of the lone-pair orbitals on N 1 and N 2 to be nearly orthogonal in order to minimize the corresponding overlap and resonance integrals. The molecules have no internal symmetry in the solid state and are thus
conformationally chiral. The achiral space group ensures that each crystal contains only a single enantiomeric form.

The molecules of compound (I) are linked into a complex three-dimensional framework structure by a combination of one two-centre $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, one rather asymmetric three-centre $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{N})$ hydrogen bond and two independent two-centre $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The formation of the sheet is readily analysed in terms of simple substructures.

In the first substructure, amide atom N 1 in the molecule at (x, y, z) acts as hydrogen-bond donor to amide atom O 7 in the molecule at $(-1+x, y, z)$, so generating by translation a $C(4)$ (Bernstein et al., 1995) chain running parallel to the [100] direction (Fig. 2). In addition, atoms N 2 and C 26 in the molecule at (x, y, z) both act as hydrogen-bond donors to atom O7 in the molecule at $\left(-\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$, so forming a $C(5) C(7)\left[R_{2}^{1}(6)\right]$ chain of rings running parallel to the [100] direction and generated by the 2_{1} screw axis along ($x, \frac{1}{4}, \frac{1}{2}$) (Fig. 3). Atom N 2 at (x, y, z) also forms a rather long and probably fairly weak interaction with atom N 2 at $\left(-\frac{1}{2}+x, \frac{1}{2}-y\right.$,

Figure 1
A molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of rings running parallel to the [100] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
$1-z$), so that N 2 can be regarded as the donor in an asymmetric but almost planar three-centre $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{N})$ hydrogen bond. The combination of all these interactions generates a complex chain of rings running parallel to the [100] direction (Fig. 2).

The second substructure is built from a single $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Aryl atom C3 in the molecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O42 in the molecule at $\left(-x,-\frac{1}{2}+y, \frac{3}{2}-z\right)$, so forming a $C(5)$ chain running parallel to the [010] direction and generated by the 2_{1} screw axis along $\left(0, y, \frac{3}{4}\right)$ (Fig. 3).

In combination, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which individually generate two independent $C(5)$ helical chains running parallel to [100] and [010], respectively, together generate a $C_{2}^{2}(16)$ chain running parallel to the [001] direction (Fig. 4). The combined action of chains parallel to

Figure 3
Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded $C(5)$ chain running parallel to the [010] direction. Atoms marked with an asterisk (*) or a hash (\#) are at the symmetry positions $\left(-x,-\frac{1}{2}+y, \frac{3}{2}-z\right)$ and $\left(-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$, respectively. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Figure 4
A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded $C_{2}^{2}(16)$ chain running parallel to the [001] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[100], [010] and [001] (Figs. 2-4) suffices to generate a single three-dimensional framework.

In the related 3,5-dinitro compound, (II) (Wardell et al., 2006), the molecules are again conformationally chiral, with a $\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 21$ torsion angle of $84.2(2)^{\circ}$, but the centrosymmetric space group $P 2_{1} / n$ accommodates equal numbers of the two enantiomeric forms. The molecules are linked into sheets by a combination of three independent twocentre hydrogen bonds, one each of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl), $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ (nitro) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) types.

Experimental

A solution of 4-nitrobenzoyl chloride (2 mmol) and phenylhydrazine (4 mmol) in 1,2-dichloroethane $(25 \mathrm{ml})$ was heated under reflux for 3 h . The reaction mixture was cooled and the solvent was removed under reduced pressure. The solid product was then recrystallized from ethanol to give the title compound, (I) [m.p. 476-478 K; literature values: 476-478 (Kornet et al., 1986) and 471-473 K (Wang et al., 2005)].

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=257.25$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.6982$ (6) \AA
$b=9.9532$ (13) \AA
$c=25.719$ (4) \AA

Data collection

Bruker Nonius KappaCCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.975, T_{\text {max }}=0.993$
$V=1202.7(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=120$ (2) K
$0.32 \times 0.16 \times 0.07 \mathrm{~mm}$

4443 measured reflections
1477 independent reflections
1314 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.149$
$S=1.10$
1477 reflections

172 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$27.5(5)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 22$	$-11.2(5)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$179.3(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 4-\mathrm{O} 41$	$8.7(6)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 21$	$81.7(4)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.18	$2.926(4)$	143
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 7^{\mathrm{ii}}$	0.88	2.14	$2.952(4)$	154
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N}^{\mathrm{ii}}$	0.88	2.62	$3.302(4)$	135
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 42^{\mathrm{iii}}$	0.95	2.52	$3.419(5)$	158
$\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 7^{\mathrm{ii}}$	0.95	2.50	$3.285(5)$	140

Symmetry codes: (i) $x-1, y, z$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (iii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.

The space group $P 2_{1} 2_{1} 2_{1}$ was uniquely assigned from the systematic absences. All H atoms were located in difference maps and

organic compounds

then treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. In the absence of significant resonant scattering, it was not possible to determine the absolute configuration of the molecules in the crystal selected for data collection. However, this has no chemical significance and the Friedel-equivalent reflections were merged prior to the final refinements.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

The X-ray data were collected at the EPSRC National Crystallography Service, University of Southampton, UK; the authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3075). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada
Kornet, M. J., Tita, T. T. \& Thio, A. P. (1986). Synth. Commun. 16, 1261-1274.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13
Wang, X., Yu, H., Xu, P. \& Zheng, R. (2005). J. Chem. Res. pp. 595-597.
Wardell, S. M. S. V., Souza, M. V. N. de, Wardell, J. L., Low, J. N. \& Glidewell, C. (2006). Acta Cryst. E62, o2589-o2591.

